

SFP-WDM-SM-02120A

1.25Gbps SFP Bi-Directional Transceiver, 120km Reach 1490nm TX / 1550nm RX

Features

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- 1490nm DFB laser and APD photodetector for 120km transmission
- Compliant with SFP MSA and SFF-8472 with simplex LC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature range of 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial)

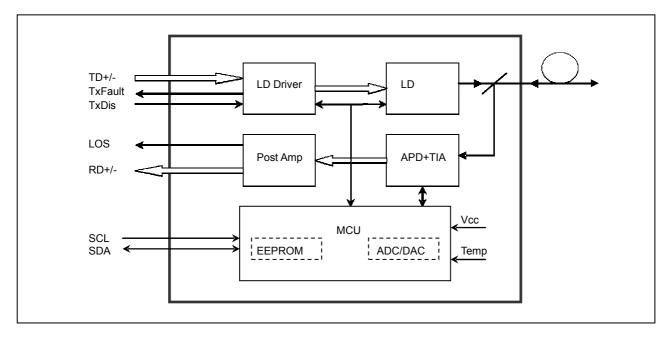
Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Description

The SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.063Gbps and 120km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a APD photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.


The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Мах	Unit	
		Commercial	Ta	0		+70	°C
Operating Case Ten	nperature	Industrial	- Tc	-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V	
Power Supply Current		lcc			300	mA	
Gigabit Ethernet				1.25		Ohaa	
Data Rate Fiber Channel				1.063		Gbps	

Optical and Electrical Characteristics

Para	meter	Symbol	Min	Typical	Мах	Unit	Notes
		Transmitt	er	·			
Centre Wavelength		λς	1470	1490	1510	nm	
Spectral Width (-20dB)		Δλ			1	nm	
Side Mode Suppression I	Ratio	SMSR	30			dB	
Average Output Power		Pout	0		5	dBm	1
Extinction Ratio		ER	9		13	dB	
Optical Rise/Fall Time (20	0%~80%)	t _r /t _f			0.26	ns	
Data Input Swing Differer	ntial	Vin	400		1800	mV	2
Input Differential Impedar	nce	Z _{IN}	90	100	110	Ω	
	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
	1	Receive	r				
Centre Wavelength		λς	1530		1570	nm	
Receiver Sensitivity					-32	dBm	3
Receiver Overload			-3			dBm	3
LOS De-Assert		LOSD			-33	dBm	
LOS Assert		LOS _A	-35			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swing Differential		Vout	370		1800	mV	4
1.00		High	2.0		Vcc	V	
LOS		Low			0.8	v	

Notes:

1. The optical power is launched into SMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 2⁷-1 test pattern @1250Mbps, BER≤1×10⁻¹².

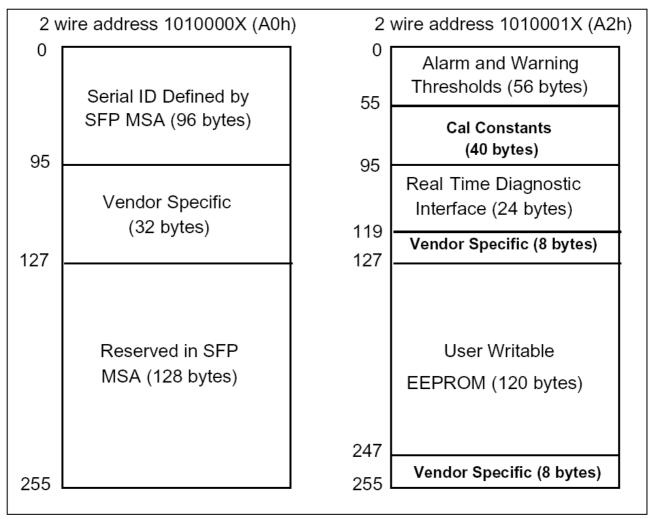
4. Internally AC-coupled.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

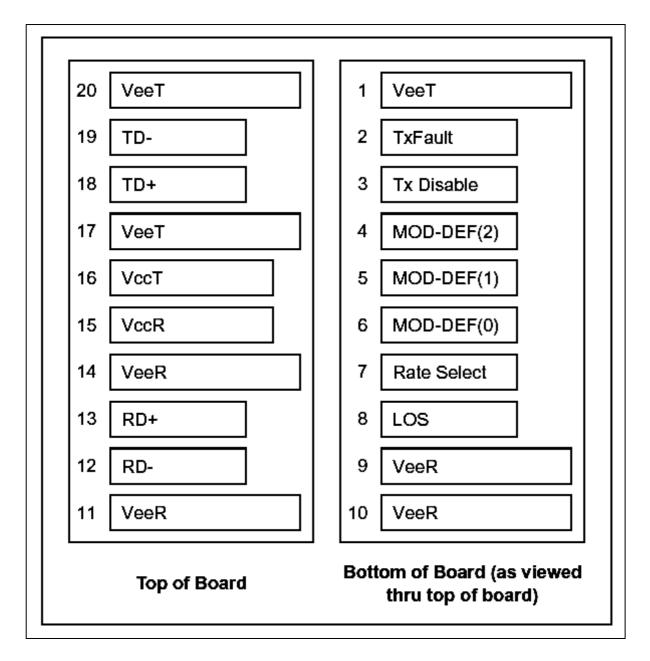
Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration	
Tomporatura	0 to +70	°C	±3°C	Internal / External	
Temperature	-40 to +85	°C	±3 C		
Voltage	3.0 to 3.6	V	±3%	Internal / External	
Bias Current	0 to 100	mA ±10% Intern		Internal / External	
TX Power	0 to 5	dBm	±3dB	Internal / External	
RX Power	-30 to -6	dBm ±3dB Int		Internal / External	



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).


The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

SFP Transceiver Electrical Pad Layout

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connect	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver ground	1	
10	VeeR	Receiver ground	1	
11	VeeR	Receiver ground	1	
12	RD-	Inv. Received Data Out 3		Note 5
13	RD+	Received Data Out 3		Note 5
14	VeeR	Receiver ground	1	
15	VccR	Receiver Power Supply	2	
16	VccT	Transmitter Power Supply	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In 3		Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

 TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7k~10kΩ resistor. Its states are:

resistor. Its states are:

Low (0 to 0.8V): Transmitter on

(>0.8V, < 2.0V): Undefined

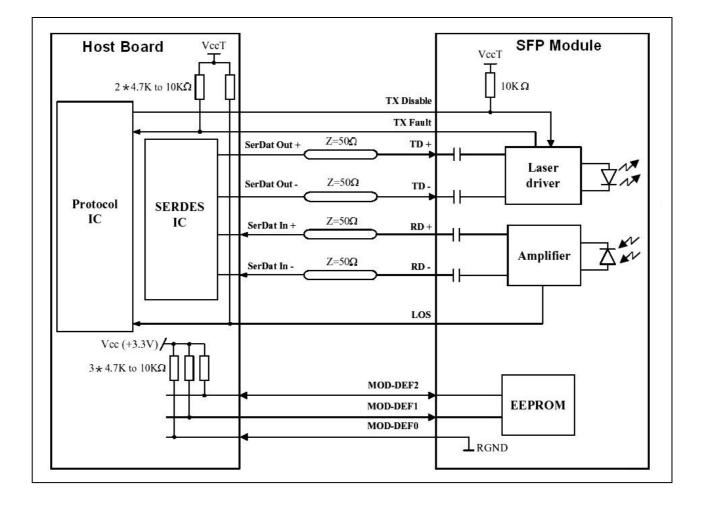
High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

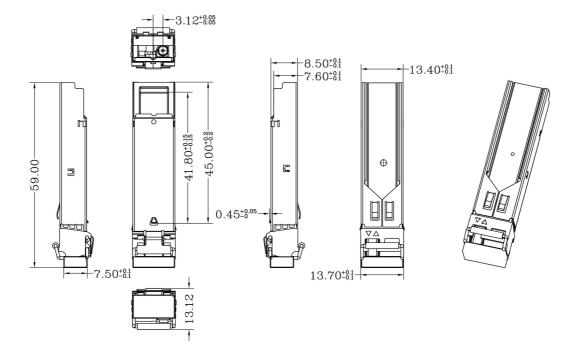
3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID


Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.



Recommended Interface Circuit

Mechanical Dimensions

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015.7	Class 1(>500 V) Isolation with the case
Electromagnetic Interference (EMI)	FCC Part 15 Class B	Compatible with standards
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2	Compatible with Class I laser product. Compatible with TüV standards
Component Recognition	UL and CUL	UL file E317337
Green Products	2002/95/EC 2005/618/EC RoHS6	

Ordering information

Part Number	Product Description
SFP-WDM-SM-02120A	Tx1490/Rx1550nm, 1.25Gbps, LC, 120km, 0°C~+70°C
SFP-WDM-SM-02120DA	Tx1490/Rx1550nm, 1.25Gbps, LC, 120km, 0°C~+70°C, With Digital Diagnostic Monitoring
SFP-WDM-SM-02120IA	Tx1490/Rx1550nm, 1.25Gbps, LC, 120km, -40°C~+85°C
SFP-WDM-SM-02120DIA	Tx1490/Rx1550nm, 1.25Gbps, LC, 120km, -40°C~+85°C, With Digital Diagnostic Monitoring

References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 2. Telcordia GR-253-CORE and ITU-T G.957 Specifications.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by OPTONE before they become applicable to any particular order or contract. In accordance with the OPTONE policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of OPTONE or others. Further details are available from any OPTONE sales representative.

sales@optone.net http://www.optone.net